
Fine-grained Scalability of
Digital Library Services in the

Cloud

Lebeko Poulo, Lighton Phiri
and Hussein Suleman

Digital Libraries Laboratory
Department of Computer Science

University of Cape Town



Research Overview

� Digital Libraries (DLs) and Digital Library
Systems (DLSes)

� Research objectives
� Develop techniques for building scalable digital

information management systems based on efficient
and on-demand use of generic grid-based
technologies

� Explore the use of existing cloud computing
resources

� Research questions
� Can a typical DL architecture be layered over an

on-demand paradigm such as cloud computing?
� Is there linear scalability with increasing data and

service capacity needs?



How Quickly Does Data Scale?

� Extent of data scalability
� Data growth rates estimated at 40% per year
� By 2020, data volumes will have grown to 44 times

the 2009 size



Scaling Digital Library Systems

� Key criteria for design/implementation of DLSes
� Scalability
� Preservation

� The promise of cloud computing proven many
times

� Feasibility of migrating and hosting DLs evident

� Investigation of deep integration of DL services
with cloud services required

� Investigate efficacy of DL cloud adoption
� Verify extent of unlimited scale
� Maximise potential for cloud-service-level scalability



Prototype DLS - Design

� RQ #1—Can a typical DL architecture be
layered over an on-demand paradigm?

� Prior work on potential architectural designs for
utility clouds

� Emulation of parallel programming architectures
� Utility computing offers flexibility of multiple

architectural models
� Potential architectures for scalable utility services

� Two architectural patterns adopted as basis for
design of prototype architecture

� Proxy architectures
� Some aspects of Client-side architecture



Prototype DLS - Architecture

Browse Module

Amazon
S3

Buckets

Amazon
EBS

Amazon
SimpleDB

Search Module

Domains

OAI-PMH Harvester Module

Instance
A

Instance
B

Instance
C

Instance
D

Amazon EC2

REST API



Prototype DLS - Services

Browse Module Search Module OAI-PMH Harvester Module

Web User Interface

� Two typical DL services, accessible via publicly
available Light-weight process Web interface

� Browse module—enable access through gradual
refinement

� Search module—enable access through search
queries

� OAI-PMH endpoint used to ingest data into
collections



Prototype DLS - Application Server

Instance
A

Instance
B

Instance
C

Instance
D

Amazon EC2

REST API

� Amazon Elastic Compute Cloud (EC2) to
provide sizeable computing capacity

� 32-bit Ubuntu Amazon Machine Images (AMIs)
� Glassfish 3.1
� Prototype DLS



Prototype DLS - Data Storage

Amazon
S3

Buckets

Amazon
EBS

Amazon
SimpleDB

Domains

REST API

� Amazon Simple Storage Service (S3) for storage
and retrieval of large numbers of data objects

� Amazon SimpleDB for querying stored
structured data

� Amazon Elastic Block Store (EBS) to enable
storage persistence of EC2 instances



Evaluation - Experimental Design
� RQ #2—Is there linear scalability with increasing

capacity needs?
� Goals

� Evaluate potential scalability advantages associated
with cloud-based DLs

� Evaluation aspects
� Data/service scalability and load testing

� Workload
� Number of user requests, number of users and

collection sizes

� Metrics
� Response time

� Factors
� EC2 instances, users, requests, collection size



Evaluation - Experimental Setup

� Test dataset—NDLTD and NETD portals
� Ingested using OAI-PMH harvester module

� Execution environment
� All experimental test conducted on EC2 cloud

infrastructure
� EC2 instance of type t1.micro used for

server-side processing
� 32-bit Ubuntu Amazon Machine Image (AMI)

configuration

� Apache JMeter used to simulate user requests
� All measurement results based on five-run

averages



Experiment #1 - Service Scalability

� Determine the time taken for browse and search
service requests

� Assess impact due to variation of multiple server
front-ends

� Methodology
� JMeter used to simulate 50 users for each Web

service, ten times
� Web services hosted on four identical EC2 instances
� Experiments repeated at least five times for each

service criteria
� Comparative analysis—browsing categories for

browse service—by partitioning requests into blocks
of 50



Experiment #1 - Browse Service

600

800

1000

1200

1
-5

0

51
-1

00

10
1

-1
50

15
1

-2
00

20
1

-2
50

25
1

-3
00

30
1

-3
50

35
1

-4
00

40
1

-4
50

45
1

-5
00

Number of requests

R
es

po
ns

e
tim

e
(m

s)

Browsing by title Browsing by date Browsing by author



Experiment #1 - Browse Service (2)

600

900

1200

1500

13
56

92
51

11
12

3
13

56
92

51
11

53
8

13
56

92
51

11
93

4
13

56
92

51
12

36
2

13
56

92
51

12
76

5
13

56
92

51
13

08
1

13
56

92
51

13
49

1
13

56
92

51
13

82
1

13
56

92
51

14
11

8
13

56
92

51
14

51
5

13
56

92
51

14
75

7
13

56
92

51
15

15
6

13
56

92
51

15
45

5
13

56
92

51
15

76
1

13
56

92
51

16
07

5
13

56
92

51
16

56
8

13
56

92
51

16
78

9
13

56
92

51
17

10
3

13
56

92
51

17
52

8
13

56
92

51
17

74
9

13
56

92
51

18
17

8
13

56
92

51
18

44
6

13
56

92
51

18
74

2
13

56
92

51
19

09
2

13
56

92
51

19
42

5

Timestamp

R
es

po
ns

e
tim

e
(m

s)

Browse by author Browse by date Browse by title



Experiment #1 - Browse Service (3)

500

600

700

1
-5

0

51
-1

00

10
1

-1
50

15
1

-2
00

20
1

-2
50

25
1

-3
00

30
1

-3
50

35
1

-4
00

40
1

-4
50

45
1

-5
00

Number of requests

Ti
m

e/
bl

oc
k

(m
s)

1 instance 2 instances 3 instances 4 instances



Experiment #2 - Data Scalability

� Determine service performance for varying
collection sizes for fixed number of servers

� Ascertain if application can cope with increasing
data volumes in DL collections

� Methodology
� JMeter set up to simulate 50 users accessing a Web

service ten times
� Fixed number of identical servers with collection

sizes of 4k, 8k, 16k and 32k records
� Experiments repeated at least five times for each

service
� Comparative analysis by partitioning requests into

blocks of 50



Experiment #2 - Browse Service

800

900

1000

1100

1
-5

0

51
-1

00

10
1

-1
50

15
1

-2
00

20
1

-2
50

25
1

-3
00

30
1

-3
50

35
1

-4
00

40
1

-4
50

45
1

-5
00

Number of requests

R
es

po
ns

e
tim

e
(m

s)

4000 8000 16000 32000



Experiment #3 - Load Testing

� Determine volume of requests application could
process for increasing concurrent users

� Methodology
� JMeter set up to varying number of users accessing

a Web service
� Fixed number of identical servers used
� Initially simulate five users, each accessing a Web

service ten times
� Subsequent simulation of 20, 50, 100, 250 and 500

users
� Experiments repeated at least five times for each

service



Experiment #3 - All Services

700

800

900

1000

5 20 50 10
0

25
0

50
0

Number of users

R
es

po
ns

e
tim

e
(m

s)

Search operation Browse operation



Conclusion

� Key findings
� Redesign of application architectural components to

conform to cloud service architecture
� Results indicate that response times are not

significantly affected by request complexity,
collection size or request sequencing

� Noticeable time taken to connect to AWS—ramp up
time

� Study Limitations
� Single EC2 instance type—t1.micro—used
� Cloud service vendor
� Experimental dataset size
� Query optimisation
� Synthetic load used



Bibliography

Hussein Suleman (2009).
Utility-based High Performance Digital Library Systems.

Pradeep Teregowda et al. (2010).
Cloud Computing: A Digital Libraries Perspective.

Pradeep Teregowda et al. (2010).
CiteSeerx: A Cloud Perspective.

Byung Chul Tak et al. (2011).
To Move or Not to Move: The Economics of Cloud
Computing.

Jinesh Varia (2011).

Architecting for The Cloud: Best Practices.



Questions?

Additional information

http://dl.cs.uct.ac.za

http://dl.cs.uct.ac.za

