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Research Overview

� Digital Libraries (DLs) and Digital Library
Systems (DLSes)

� Research objectives
� Develop techniques for building scalable digital

information management systems based on efficient
and on-demand use of generic grid-based
technologies

� Explore the use of existing cloud computing
resources

� Research questions
� Can a typical DL architecture be layered over an

on-demand paradigm such as cloud computing?
� Is there linear scalability with increasing data and

service capacity needs?



How Quickly Does Data Scale?

� Extent of data scalability
� Data growth rates estimated at 40% per year
� By 2020, data volumes will have grown to 44 times

the 2009 size



Scaling Digital Library Systems

� Key criteria for design/implementation of DLSes
� Scalability
� Preservation

� The promise of cloud computing proven many
times

� Feasibility of migrating and hosting DLs evident

� Investigation of deep integration of DL services
with cloud services required

� Investigate efficacy of DL cloud adoption
� Verify extent of unlimited scale
� Maximise potential for cloud-service-level scalability



Prototype DLS - Design

� RQ #1—Can a typical DL architecture be
layered over an on-demand paradigm?

� Prior work on potential architectural designs for
utility clouds

� Emulation of parallel programming architectures
� Utility computing offers flexibility of multiple

architectural models
� Potential architectures for scalable utility services

� Two architectural patterns adopted as basis for
design of prototype architecture

� Proxy architectures
� Some aspects of Client-side architecture



Prototype DLS - Architecture
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Prototype DLS - Services

Browse Module Search Module OAI-PMH Harvester Module

Web User Interface

� Two typical DL services, accessible via publicly
available Light-weight process Web interface

� Browse module—enable access through gradual
refinement

� Search module—enable access through search
queries

� OAI-PMH endpoint used to ingest data into
collections



Prototype DLS - Application Server
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� Amazon Elastic Compute Cloud (EC2) to
provide sizeable computing capacity

� 32-bit Ubuntu Amazon Machine Images (AMIs)
� Glassfish 3.1
� Prototype DLS



Prototype DLS - Data Storage
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� Amazon Simple Storage Service (S3) for storage
and retrieval of large numbers of data objects

� Amazon SimpleDB for querying stored
structured data

� Amazon Elastic Block Store (EBS) to enable
storage persistence of EC2 instances



Evaluation - Experimental Design
� RQ #2—Is there linear scalability with increasing

capacity needs?
� Goals

� Evaluate potential scalability advantages associated
with cloud-based DLs

� Evaluation aspects
� Data/service scalability and load testing

� Workload
� Number of user requests, number of users and

collection sizes

� Metrics
� Response time

� Factors
� EC2 instances, users, requests, collection size



Evaluation - Experimental Setup

� Test dataset—NDLTD and NETD portals
� Ingested using OAI-PMH harvester module

� Execution environment
� All experimental test conducted on EC2 cloud

infrastructure
� EC2 instance of type t1.micro used for

server-side processing
� 32-bit Ubuntu Amazon Machine Image (AMI)

configuration

� Apache JMeter used to simulate user requests
� All measurement results based on five-run

averages



Experiment #1 - Service Scalability

� Determine the time taken for browse and search
service requests

� Assess impact due to variation of multiple server
front-ends

� Methodology
� JMeter used to simulate 50 users for each Web

service, ten times
� Web services hosted on four identical EC2 instances
� Experiments repeated at least five times for each

service criteria
� Comparative analysis—browsing categories for

browse service—by partitioning requests into blocks
of 50



Experiment #1 - Browse Service
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Experiment #1 - Browse Service (2)
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Experiment #1 - Browse Service (3)
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Experiment #2 - Data Scalability

� Determine service performance for varying
collection sizes for fixed number of servers

� Ascertain if application can cope with increasing
data volumes in DL collections

� Methodology
� JMeter set up to simulate 50 users accessing a Web

service ten times
� Fixed number of identical servers with collection

sizes of 4k, 8k, 16k and 32k records
� Experiments repeated at least five times for each

service
� Comparative analysis by partitioning requests into

blocks of 50



Experiment #2 - Browse Service
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Experiment #3 - Load Testing

� Determine volume of requests application could
process for increasing concurrent users

� Methodology
� JMeter set up to varying number of users accessing

a Web service
� Fixed number of identical servers used
� Initially simulate five users, each accessing a Web

service ten times
� Subsequent simulation of 20, 50, 100, 250 and 500

users
� Experiments repeated at least five times for each

service



Experiment #3 - All Services
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Conclusion

� Key findings
� Redesign of application architectural components to

conform to cloud service architecture
� Results indicate that response times are not

significantly affected by request complexity,
collection size or request sequencing

� Noticeable time taken to connect to AWS—ramp up
time

� Study Limitations
� Single EC2 instance type—t1.micro—used
� Cloud service vendor
� Experimental dataset size
� Query optimisation
� Synthetic load used
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Questions?

Additional information

http://dl.cs.uct.ac.za

http://dl.cs.uct.ac.za

